Instructions: This exam consists of six questions. You have two hours to give a reasoned answer to all the exercises. Write the quiz entirely in ink. Calculators are not permitted.

1 Determine the values of the parameter $a \in \mathbb{R}$ for which the matrix $A$ is diagonalizable.

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & a & 1 \\
-3 & 0 & 3
\end{array}\right)
$$

Solution. The characteristic polynomial is $p(\lambda)=|A-\lambda| \mid=(1-\lambda)(a-\lambda)(3-\lambda)$. Thus, the eigenvalues of $A$ are $\sigma(A)=\{1, a, 3\}$. If $a \notin\{1,3\}$ then the roots of the characteristic polynomial are different each other, and hence, $A$ can be diagonalized.
(a) If $a=1$. Then $\sigma(A)=\{1,3\}$ with $m(1)=2$ and $m(3)=1$. On the other hand, $\operatorname{dim} S(1)=$ $3-(A-1 \cdot / 3)=3-2=1$. Since the dimension of the eigenspace and the multiplicity do not coincide, the matrix $A$ is not diagonalizable when $a=1$.
(b) If $a=3$. Then $\sigma(A)=\{1,3\}$ with $m(1)=1$ and $m(3)=2$. On the other hand, $\operatorname{dim} S(3)=$ $3-\left(A-3 \cdot I_{3}\right)=3-2=1$. Since the dimension of the eigenspace and the multiplicity do not coincide, the matrix $A$ is not diagonalizable when $a=3$.

Suppose that there is market with a single commodity whose demand function is $D(P)=4-2 P$ and whose supply function is $S(P)=-2+P$, where $P>0$ denotes the unit price of the commodity. Assume that time is discrete and the market behaves according to the cobweb model, that is, $S\left(P_{t}\right)=D\left(P_{t+1}\right)$ for each $t$.
(a) Obtain the expression of $P_{t}$ when $P_{0}=4$.
(b) Obtain the equilibrium $\bar{P}$.
(c) Analyze the behavior of the price in the long run.

## Solution.

(a) The difference equation we need to solve is

$$
-2+P_{t}=4-2 P_{t+1} \equiv 2 P_{t+1}+P_{t}=6
$$

The characteristic polynomial of the associated homogeneous equation is $2 r+1=0$; hence $P_{t}^{h}=$ $A_{0}\left(-\frac{1}{2}\right)^{t}$. Since the independent term $b_{t}=6$ is a polynomial of degree zero, we try as particular solution $P_{t}=C$. Once we substitute into the equation we obtain that $P_{t}^{P}=C=2$. Finally $P_{t}=$ $A_{0}\left(-\frac{1}{2}\right)^{t}+2$. Since $P_{0}=4$ (and then $A_{0}=2$ ), we conclude that

$$
p_{t}=2\left(-\frac{1}{2}\right)^{t}+2
$$

(b) The equilibrium is a value $\bar{P}$ such that $\bar{P}+2 \bar{P}=6$, this is, $\bar{P}=2$.
(c) In the long run, $\lim _{t \rightarrow \infty} P_{t}=2$. So, it converges to the equilibrium.

3 Consider the following system of equations

$$
X_{t+1}=\left(\begin{array}{cc}
2 & 0 \\
3 & -2
\end{array}\right) X_{t}
$$

(a) Obtain the solutions of the previous system.
(b) Compute the equilibrium $\bar{X}$.
(c) Is the equilibrium $\bar{X}$ globally asymptotically stable?

## Solution.

(a) The eigenvalues are $1_{1}=2$ and $\lambda_{2}=-2$, with corresponding eigenvectors $u_{1}=(4,3)$ and $u_{2}=(0,1)$. Therefore, the solution is:

$$
x_{t}=A_{1} 2^{t}\binom{4}{3}+A_{2}(-2)^{t}\binom{0}{1}
$$

(b) The equilibrium is the point $\bar{x}$ such that $\bar{X}=A \bar{x}$. Then, $\bar{X}^{\top}=(0,0)$.
(c) Since $|2|>1$, the equilibrium are not globally asymptotically stable.

4 Solve the following differential equation: $t^{2} x^{\prime}=1-t x$.
Solution. This is linear equation whose canonical form is $x^{\prime}+\frac{1}{t} x=\frac{1}{t^{2}}$. We compute $\mu(t)=e^{\int \frac{1}{t} d t}=t$. Mutiplying both sides by $\mu(t)$ and making some transformation we get that $(x \cdot t)^{\prime}=\frac{1}{t}$. Therefore $x(t)=\frac{\ln t}{t}+\frac{C}{t}$.

5 Solve the following equation: $x^{\prime \prime}-4 x^{\prime}+4 x=\sin t$.
Solution. The root of the characteristic polynomial is $r=2$ with multiplicity 2 . Then,

$$
x^{h}(t)=A_{0} e^{2 t}+A_{1} t e^{2 t} .
$$

Since $b(t)=\sin t$, we propose $x^{p}(t)=C_{0} \sin t+D_{0} \cos t$. Taking the need derivatives and substituting we get that $C_{0}=\frac{3}{7}$ and $D_{0}=\frac{4}{7}$. And then, $x^{p}(t)=\frac{3}{7} \sin t+\frac{4}{7} \cos t$.Finally

$$
x(t)=A_{0} e^{2 t}+A_{1} t e^{2 t}+\frac{3}{7} \sin t+\frac{4}{7} \cos t
$$

6 Consider the differential equation $x^{\prime}=f(x)$. The following picture shows the trajectories of the solution of this equation.
(a) Identify the equilibria.
(b) Study the stability.
(c) Make a sketch of the phase diagram corresponding to this situation.

## Solution.

(a) The equilibria are $\bar{x}=-2, \bar{x}=2$, and $\bar{x}=6$.
(b) $\bar{x}=-2$ and $\bar{x}=6$ are unstable, while $\bar{x}=2$ is stable.
(c) The sketch is


